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NOTATION

-1/2

A Van Driest's damping factor, A = 26v

a Length of major elliptical axis at given x/L

a, Turbulence structure parameter, a, = -u- q2

a* Effective displacement thickness, see Equation (3)

b Length of minor elliptical axis at given x/L

C Pressure coefficient, Cp = (p-p )/(i/2pU = 1 - (U /U) 2
p p 0 e o

hi, h2  Metric coefficients

K1, K2  Geodesic curvatures of the curves z = constant and
x = constant, respectively

K12' K21 Functions of the geodesic curvatures and metric coefficients

L Total body length

Mixing length parameter: In the inner region

Z = 0.4 y [l-exp(-y/A)l

In the outer region

2 [~u2 (w \2 1/2

Lne'+ e' i u

Coordinate measured normal to the body profile in the y-z planee

p Measured local static pressure

Po Measured ambient pressure

Ps Measured static pressure

Pt Measured dynamic total pressure

vi



q Turbulence parameter, q = u 2 + V 2 2 + 2

UL
RL Reynolds number based on model length, R.L -

rc  Radius of curvature at major or minor axis of elliptic
cross section

U Computed potential flow velocity on the displacement body
e

U Free-stream velocity

U Potential flow velocity at the edge of the boundary layer

u, v, w Mean velocity components in the x, y, and z directions,
respectively

UxV, w Mean velocity components in the x, n, and 0 directions,
respectively

ux , v 2 w 2 Turbulent fluctuations in the x, ne, and e directions, respectively

UxV', UxW0  Reynolds stresses

x, n e Coordinates used to present measured boundary layer data

x, y, z Nonorthogonal boundary-layer coordinates, see Reference 6.

XTH Location of the thick stern boundary layer

aAngle between the body surface and the body axis

6a, 6b  Boundary-layer thickness at major and minor axis, respectively, of
elliptical cross section

6 6 Boundary-layer thickness measured in n -direction.
r e

6* Planar displacement thickness
p

Eddy viscosity

vii



0 o  Eddy viscosity in the inner and outer regions, respectively, see
Equation (2)

0 Angular coordinate measure in the y-z plane from the z-axis to the

line joining the surface offset and elliptic center

e Angle between the x and z coordinates

A* Effective displacement area

V Kinematic viscosity of the fluid

p Mass density of the fluid

Ttw Shear stress at the wall
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ABSTRACT

A comprehensive set of experimental pressure, velocity, and
turbulence data are presented across the stern of a three-
dimensional model having 3:1 elliptic transverse cross sections.
The axisymmetric displacement body concept is extended to three-
dimensions and the pressure and velocity data are compared with
the predictions of existing three-dimensional theoretical methods.
The surface pressures for the displacement body are found to model,
satisfactorily, the measured pressure coefficients in all regions
except over the aft 7 percent of body length. In this tail region,
the boundary layer is much thicker than the cross section dimensions
and the theory overpredicts the measured distributions of the mean
velocity. Agreement is particularly poor in the inner region of
the tail boundary layer, indicating a need to examine the eddy
viscosity model currently used in computing the thick stern boundary
layer of three-dimensional models. As was found in the axisymmetric
case, the measured values of turbulence intensity, eddy viscosity,
and mixing-length parameters in the stern region are much smaller
than those of a thin boundary layer.

ADMINISTRATIVE INFORMATION

The work described in this report was funded under the David W. Taylor Naval

Ship Research and Development Center's Independent Research Program, Program Element

61152N, Project Number ZR 000 01, and Work Unit 1542-103,

INTRODUCTION

Many single-screw ship propellers operate inside of thick stern boundary layers.

Satisfactory predictions of turbulent boundary-layer characteristics can be made for

the forward portions of a body by solving the boundary-layer equations in either

integral or differential forms. However, at the ship stern, the thickness of the

boundary layer increases rapidly, mainly due to the diminishing cross-sectional area.

The thickness of the stern boundary layer usually exceeds the thickness of the body.

Detailed measurements of the turbulent boundary-layer characteristics in the thick
*i 2

stern boundary layers of axisymmetric bodies have been made by Huang et al. ' in

order to gain insight into the physics of thick stern boundary layers. These

measurements have been used to validate the displacement body concept as suggested

by Preston 3 and Lighthill4 for solving viscid-inviscid flow interaction and an

improved turbulence model has been obtained for computing thick axisymmetric boundary

*A complete listing of references is given on page 105.
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layers on two convex sterns and one concave stern. '
2 The present work is an initial

investigation into extending to three-dimensions the previous studies on axisymmetric

bodies by Huang et al.
1 ,2

Experiments have been made to measure the flow across the thick stern boundary

layer of a three-dimensional body having a 3:1 elliptical transverse cross section.

A 10.06 ft (3.07 m) fiberglass model was tested in the Center's Anechoic Flow

Facility at a speed of 100 ft/sec (30.48 m/s), resulting in an overall Reynolds

6
number based on length of 6.5 x 10 . Pressure taps, embedded in the model, were

used to measure the pressure distribution on the surface. Velocity and turbulence

characteristics were measured using a two-element hot-film sensor and were analyzed

with an on-line computer. Measurements include mean velocity profiles, turbulence

intensities, Reynolds stresses, eddy viscosity, and mixing length.

Several experimental quantities are compared with data from existing theoreti-

cal methods using an iterative scheme. The potential flow distribution on the body

surface is computed using the XYZ Potential Flow (XYZPF) computer code of Dawson and

Dean.5 An initial boundary-layer computation, using the McDonnell Douglas

Corporation, 6 Cebeci, Chang, Kaups (C 2K) computer code, is made using the potential-

flow pressure distribution on the body. Flow separation is predicted for this model

by the C 2K code at axial locations greater than 4 percent of the body length and

angular locations greater than 75 degrees. Excessive boundary-layer growth in the

separated region caused the boundary-layer calculation to abort prematurely at 81

percent of the body length. Predictions of the effective displacement thickness for

the remaining 19 percent of the body length are obtained by extrapolation. The

potential and boundary-layer flow calculations are repeated once for a modified body

and wake geometry, formed by adding the computed effective displacement thickness.

Comparison of predicted and measured results shows that this procedure predicts

accurate values of pressure over the forward 93 percent of the body and accurate mean

velocity profiles in locations where the boundary layer is thin compared with cross-

sectional area. The measured eddy viscosity distribution is compared with the thin

6,7
boundary-layer model of Cebeci

6
' and is found to be smaller than predictions.

In the following sections, the experimental techniques and model geometry are

given in detail. The experimental data are presented and compared with theoretical

predictions. The raw data and derived results are given in tabular form for inde-

pendent use by other investigators.
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WIND TUNNEL AND MODEL

The experimental investigation was conducted in the DTNSRDC Anechoic Wind Tunnel

Facility. The wind tunnel has a closed jet test section that is 8 ft (2.4 m) square

and 13.75 ft (4.19 m) long. The corners have fillets which are carried through the

contraction. The test section is followed by an acoustically-lined large chamber

23.5 ft (7.16 m) long. It was found previously, by Huang et al., that the ambient

free-stream turbulence levels, u /U) x 100, are 0.075, 0.090, 0.100 and from

0.12 to 0.15 for free-stream velocities, U0, of 24.4, 30.5, 38.1, and 45.7 m/s,

respectively. Integration of the measured noise spectrum levels in the test section

from 10 to 10,000 Hz indicated that the typical background acoustic noise levels at

30.5 m/s were about 93 dB re 0.0002 dyne/cm 2 (0.0002 Pa). These levels of ambient

turbulence and acoustic noise were considered low enough so as not to unfavorably

affect the measurement of boundary-layer characteristics. The maximum air speed that

can be achieved is 200 ft/sec (61 m/s); in the present experiments the wind tunnel

velocity was held constant at 100 ft/sec (30.48 m/s).

A simple three-dimensional body, having a 3:1 elliptic transverse cross section

with a bow entrance length of 6.23 ft (1.897 m), was used for the present experi-

mental investigation. The total model length is 10.06 ft (3.07 m) with a maximum

major axis of 1.588 ft (0.48 m) and a maximum minor axis of 6.35 in. (16.12 cm).

A schematic of the three-dimensional afterbody with the 3:1 elliptic cross section

is shown in Figure 1. The major and minor elliptic axes are shown in Figure I as

a and b, respectively. The model is shown in the anechoic wind tunnel facility in

Figure 2. The support struts shown in the figure are not the struts used for this

experiment. Model offsets are presented in Table 1.

Tile model was supported by two streamlined struts separated by one-third of the

model length. The struts are 0.5-in. (1.27-cm) thick with a 1.5-in. (3.81-cm) chord

upstream and 2.25-in. (5.72-cm) thick with a 6.0-in. (15.24-cm) chord downstream.

The model is designed to rotate 90 degrees radially about a center axis to permit

vertical traversing normal to the surface pressure taps (see section on

Instrumentation). The disturbances generated by the supporting struts were within

the region below the horizontal centerplane. Therefore, all of the experimental

data were taken above the model on the vertical centerplane along the upper meridian

3



where there was no effect from the supporting struts. One-half of the model length

protruded beyond the closed jet working section into the open-jet section. The

ambient static pressure coefficients across and along the entire open-jet chamber

(7.2 m x 7.2 m x 6.4 m) were found to vary less than 0.3 percent of the dynamic

pressure. Tunnel blockage and longitudinal pressure gradient effects along the

tunnel length were almost completely removed by testing the afterbody in the open-

jet section.

The location of the boundary-layer transition from laminar to turbulent flow was

artificially induced by a 0.024-in. (0.61-mm) diameter trip wire located at x/L =
1

0.05. Huang et al. found that the trip wire effectively moved the location of the

virtual origin to x/L = 0.015 for axisymmetric models at a length Reynolds number

of 5.9 x 106. The virtual origin 8 for the turbulent flow is defined such that the

sum of the laminar frictional drag from the nose to the trip wire, the parasitic

drag of the trip wire, and the turbulent frictional drag aft of the trip wire is

equal to the sum of the laminar frictional drag from the nose to the virtual origin

and the turbulent frictional drag from the virtual origin to the after end of the

model. The virtual origin locations for the three-dimensional body are expected to

be different for different streamlines. Due to the limited number of grid locations

used in the present calculation, the location of the transition for the C 2K boundary-

layer calculation is set at a constant value of x/L = 0.030. The computed differ-

ences in velocities using x/L = 0.01 and x/L = 0.03, for 
axisymmetric body 1,1,2

are found to be less than 0.1 percent of the free-stream velocities in the tail

region. Thus, the error of using the constant transition location of x/L = 0.03

for the present C 2K computation is expected to be negligible.

INSTRUMENTATION

A series of 0.031-in. (0.8-mm) diameter pressure taps were embedded normal to

the surface of the stern at nine x/L locations. When the model was rotated about

its axis, the pressure taps were at the upper meridian location. Additional taps

were added for model alinement; see Figures 3 and 4. The model was alined by

balancing the surface static pressure about a line of symmetry. From Figure 3, the

model is alined when symmetrically located pressure taps at c and d, and at e and f,

give equal pressures, i.e., p (c) - p (d), p (e) - p (f). The model was rotated to

4
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eight test positions and the alinement was checked by the pressure balance technique.

A Preston tube using a 0.072-in. (1.83-mm) inside diameter was attached and alined

with the flow at the pressure taps to measure the shear stress. The Preston tube

was calibrated in a 1-in. (2.54-cm) diameter water-pipe flow facility described

9by Huang and von Kerczek. These pressure taps were connected to a multiple pres-

sure scanivalve system that takes one integral pressure transducer with its zeroing

circuit and measures a single pressure in sequence along the stern upper meridian.

The pressure transducer was designed for measuring low pressures of up to 1 psi

(6.895 x 10- 3 Pa). The zero-drift linearity, scanivalve hysteresis, and pressure

transducer zeroing circuit were carefully checked and the overall accuracy was found

to be within 0.5 percent of the dynamic pressure.

The mean axial and radial velocities and the turbulence intensities for the

Reynolds stress calculations were measured by a TSI, Inc. Model 1241-20 "X" type

hot-film probe. The probe elements are 0.002 in. (0.05 mm) in diameter with a

sensing length of 0.04 in. (1.0 mmi). The spacing between the two cross elements is

0.04 in. (1.0 mm). A typical schematic of the hot-film probe used is shown in

Figure 5. A two-channel hot-wire and hot-film anemometer with linearizers was used

to monitor the response of the hot-film probe. A temperature compensating sensor

(probe) was used with each hot-film element to regulate the operating temperature of

the sensor with changes in air temperature. The "X" hot film and its temperature-

compensated sensor were calibrated together through the expected air temperature-

range and supplied with their individual linearization polynomial coefficients at

the factory.

The frequency response of the anemometer system, for reliable measurements

claimed by the manufacturer, is 0 to 100 kHz. Calibration of the "T' hot film was

made before and after each set of measurements. It was found that the hot-film

anemometer system had a +0.5 percent accuracy, +0.75 ft/sec (+0.23 m/s) accuracy

at the free-stream velocity of 150 ft/sec (45.72 m/s), during the entire experiment.

An estimate was made of the crossflow velocity by yawing the "X" hot-film probe in

the free stream. It was found that the crossflow velocities were about one percent

of the free-stream velocity.

The linearized signals were fed into a Time/Data Model 1923-C real-time

analyzer. Both channels of the analog signal were digitized at a rate of 128 points

5



per second for 8 sec. These data were immediately analyzed by a computer to obtain

the individual components of mean velocity, turbulence fluctuation, and Reynolds

stress on a real time basis.

A traversing system with a streamlined strut was mounted on a guide plate that

permitted the traverse to be locked in various stationary positions parallel to the

longitudinal model axis.

DISPLACEMENT BODY METHOD

The theoretical method evaluated in this report is an initial attempt at ex-

tending to three-dimensions the displacement body concept described by Wang and

Huang10 and by Huang et al., '
2 for axisymmetric bodies. The pressure distribution

is calculated using the XYZ Potential Flow (XYZPF) computer code of Dawson and

Dean.5  The input offsets to the XYZPF code are given in Table 1. The boundary-

layer flow over the body is calculated by using the differential method of Cebeci,

Chang, and Kaups (denoted C 2K).6 The flow in the wake is modeled only in the near

wake region of 0.93 < x/L < 1.05.

The C 2K method consists of using Keller's two-point finite difference method
11

and Cebeci and Stewartson's procedure6 for computing flows in which the transverse

velocity component contains regions of reverse flow to solve three-dimensional

boundary-layer equations. The governing equations for three-dimensional incom-

pressible laminar and turbulent flows are given by

Continuity Equation

(uh sin e) + La (Wh sin e) + 2- (Vhlh sinG) 0 (la)

X (12 3z (I 1  Dy ( 1h2

x-Momentum Equation

u au + wau au K U2 ccsc + KUW
ha x h az ay 1 2 12

1 2

2 -/
csc p + cot 0 csc 6 3(p/p) + b ( - )

hI ax t2 3z ;y ay- /

6

L--. - - - - ~ - ~ ~ ~ *



z-Momentum Equation

u w w w w 2 - 2

-+ + V K cot O+ K u csc + K uw
h I  x h2 z ay 2 1 21

cot a csc 6 (p/P) csc2 0 (p/p)+ w )--*

h 1x h 2  z 3y 9y - w (1c)

where u, v, and w = velocity components in the x, y, and z directions, respectively

x, y, and z = nonorthogonal boundary-layer coordinates, as given in
Reference 6

P = fluid density

p = pressure on the body

h1 , h2  = metric coefficients

K19 K2 = geodesic curvatures of the curves z = constant and
x = constant, respectively

K129 K21 = functions of the geodesic curvatures and metric coefficients

= angle between the coordinates x and z

V = kinematic viscosity of the fluid

u v , v w = Reynolds stresses

The eddy-viscosity concept is used to relate the Reynolds stresses to the mean

velocity profiles by

3i y inner region 0 < y < y
Ty -c

u v = (2)

E au
o[(y), outer region yc 

< y

where - = i 2+ 2 cos/

which is the eddy viscosity in the inner region
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with Z - 0. 4y [1-exp (- )]
I A

A = 26
u T

1/2

UT(= )s

w)

o =0.0168 J t(u-U)dy

0

u (u 2 +We2+2u cos 0)1/2
te e e e e

ut (u 2 +w2 +2uw cos 0)1/2

y is the value of y at which i Eo

The displacement model presently used for this body adds the theoretical effec-

tive displacement thickness (defined below) to the body surface along the major (y)-

and minor (z)-axes of the elliptic cross section. The surface profile along each

of these axes is extended by hand-fairing from the location of separation, or 93

percent of body length (whichever occurs first), to 5-percent aft of the body,

resulting in an open body. An elliptical cross section is defined between the off-

sets of the major and minor axes.

The C 2K computer program has been modified to compute the effective displace-

ment thickness a* at the major and minor axes along the axial length of the body.

The definition for a*, which is similar to the axisymmetric expression, is

-r c + rc 2 +2A* cos a
a2 (3)

cos a

8



where r c radius of curvature at the particular axis of interest in the y-z plane,
c i.e.,

3/2

_ 1+ (gX)2]1

Cy-axis d2y

dz2

and

[ y ) 2] 
3/2

rCz-axis d2 z

2

dy

A*= effective displacement area, A* (i.- k- rdy
f ~U te

= angle between the body surface and the body axis,

= tan- I or X = tan (-)
r = r + y cosxc

y = normal distance from the wall

Unlike the procedure for an axisymmetric body, which uses an iterative procedure

consisting of the calculation of pressure and boundary-layer flow over successive

displacement bodies, the present scheme for three-dimensional bodies uses only one

iteration. The uncertainties iii defining the displacement body in the region between

the major and minor axes and in the near-wake region lead one to question the use-

fulness of an iterative procedure at present. It is anticipated, however, that once

improvements are made in defining the displacement model over the entire body length

and in the wake region, an iterative procedure will be adopted again.

One further obstacle arose in defining the displacement body for the 3:1 trans-

verse cross-sectionAl model. Excessive boundary-layer growth in the C 2K boundary-

layer computation caused the computer program to abort prematurely. No values for

9



the effective displacement thickness were computed along the major elliptic axis

meridian for locations greater than 81 percent of the body length. A careful hand-

fairing was used to define the effective displacement thickness along the major

axis meridian.

COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS

All data are presented in the coordinate system used to experimentally measure

the boundary-layer flow. The coordinate system, denoted x - n - 0, is given in
e

Figures 1 and 4. The axial coordinate x is measured from the nose of the body and

passes through the center of the elliptic profile. The coordinates ne and e are

defined along an axial cut normal to the x-axis, i.e., in the y-z plane. The

normal component n is measured from the model surface and is normal to the elliptic
e

surface. The angular coordinate 0 is defined as the angle, in degrees, measured

from the z-axis to the line joining the surface offset and elliptic center.

PRESSURE DISTRIBUTION

The steady pressure was measured along the stern surface using pressure taps.

These taps are located at nine axial and five radial positions, for a total of 45

measurements. The pressure coefficient C is computed from the measured pressuresP

by the relationship

P-po P-po
c= 2 (4)

t-Ps - PU2 o

where p = measured local static pressure

Po = measured ambient pressure

Pt measured dynamic total pressure

Ps = measured static pressure

p = mass density of the fluid

U = free-stream velocity0

The measured values of the pressure coefficients are given in Table 2 and com-

pared in Figure 6 with two analytically-predicted distributions of pressure

10I L _ _



coefficient. The dashed curve, denoted by potential flow theory, represents the

predictions of the XYZ potential flow method of Dawson and Dean 5 before using the

displacement body concept. The solid curve shows C on the displacement body after
P

one iteration of the displacement body procedure. The computed pressure coefficient

is

2

C =1-(5)

where U is the computed potential flow velocity on the displacement body and U ise 0

the free-stream velocity, 100 ft/sec (30.48 m/s).

Two results are immediately apparent from the comparisons given in Figure 6.

First, the theory was not able to predict accurately the values of the pressure

coefficient for x/L > 0.93. At these locations, the boundary layer is much thicker

than the body cross section and theoretical displacement thicknesses were not

available due to premature abortion of the computer code calculation in the separa-

tion region. Second, the predictions using the displacement body concept agree

more closely with the measured values than do the data denoted as potential flow.

After one iteration of the displacement procedure, overall agreement between

theoretical and measured values of the pressure coefficient is considered good even

though the predicted values are slightly lower than the measured values. No further

iterations of the displacement method have been implemented at present. Further

refinement of the three-dimensional wake and near wake region by the displacement

body conception should improve the accuracy of the theoretical prediction.

MEAN VELOCITY PROFILES

Mean velocity measurements were taken with an "X" hot-film sensor which was

stepped away from the body in the n direction. Measurements of velocity in the

axial x and normal n directions, u and v , respectively, were taken with the
e x n

probe elements alined vertically. The sensor elements were rotated 90 degrees to

the horizontal position to measure the mean velocity w0 in the 6 direction. An

on-line computer was used to collect data at a sample rate of 1024 data values in

8 sec.
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The measured values of the mean velocity components are listed in Tables 3

through 9 along with other measured quantities. Tables 3 through 9 give the

measured data along the 0, 67, 80, 83, 86, 87, and 90-degree planes, respectively,

for various axial locations along the model. The velocity components are non-

dimensionalized by the free-stream velocity U . As shown in the tables, the mean

axial velocity is the largest of the three measured components. Measured mean

velocity profiles in the x and ne directions are shown in Figures 7a through 7c.

Each figure presents the profiles at various angular positions for a particular

axial location. Figure 7a shows that the mean axial velocity profiles vary only

slightly with angular position on the model at x/L = 0.719. Also, the boundary

layer is thin, with an overall thickness of less than 1 in. Little variation in

the normal velocity component is noted. Examining the profiles further aft on the

model, the boundary layer thickens with increased angular position. Little varia-

tion in profile occurs for angles less than or equal to 80 degrees. However,

profiles between 80 and 90 degrees become increasingly fuller with increased angular

location. From repeated measurements, the accuracies of the experimental measure-

ments of ux/U and Vn/U are estimated to be about 0.5 percent and 1.0 percent,

respectively.

Comparisons of the measured and predicted mean axial velocity profiles are

shown in Figure 8 at selected positions along the model. The circular symbols

represent the "X" hot-film measurements and the solid curves represent the theoreti-

cal results of the C 2K method 6 using the displacement body concept. Calculations

using the C2K computer code were made using the initial velocity profiles generated

within the computer code. Calculations were begun at 1.5 percent of the body length

with the transition located at 3 percent of the body length. Use of a limited,

discrete set of offsets to define the model for computational purposes forced the

use of this transition location. As shown in Figure 8a, the C 2K method, used with

and without the displacement body, predicted the same profile at x/L - 0.719 and 0

degrees. For the basic body geometry, prior to using the displacement body concept,
2the C K method experienced excessive boundary-layer growth and aborted prematurely,

giving no predictions for axial locations x/L > 0.81 and angles greater than 80

degrees. The agreement between the computed and measured mean axial velocity pro-

files is good at x/L = 0.719 and 0 degrees where the boundary layer is thin.
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Agreement is also fairly good at x/L = 0.954 and 0 degrees. However, at x/L = 0.954

and angular positions 83, 86, and 90 degrees, the measured axial velocity components

are smaller than the predicted components, with flow reversal predicted at 83 and 86

degrees. Agreement inside the boundary layer is particularly poor. Since the eddy

viscosity model plays an important role in this region, it is essential to examine

the eddy viscosity model used for computing the thick three-dimensional stern

boundary layer.

MEASURED TURBULENCE CHARACTERISTICS

The turbulence characteristics of the thick three-dimensional boundary layer

were measured using an "X" hot-film probe. An on-line computer was used to collect

data at a sample rate of 1024 data values in 8 sec. The root-mean-square values of

turbulence velocity were recorded at each probe position and the eddy viscosity and

mixing length values were computed from the measured Reynolds stresses and the

measured mean velocity profiles.

MEASURED REYNOLDS STRESSES
---7 7 2 2 2

The distribution of the Reynolds stresses -UVun, -UxW, ux , vn , and w

represent the turbulence characteristics in the thick boundary layer. The mean-

.2 .2
square turbulent velocity fluctuations u in the axial direction and v in tne n

x n e

direction, and the Reynolds stress -u'v" were measured with the "X" hot-film probe
xn

elements alined vertically. The probe elements were rotated 90 degrees to the hori-

zontal position to measure both the turbulent fluctuation w0
2 in the 0 direction and

the Reynolds stress -UxW . Linear interpolation was used to approximate w 2 and

-uxIw at the same off-body positions as the data measured in the vertical direction.
xO

All measured values of the turbulent fluctuations and the measured Reynolds stresses

are given in Tables 3 through 9.

The nondimensionalized distributions of the measured turbulent fluctuations

U v/U., and / and Reynolds stress -100 UxnU at selected

locations along the model, are shown in Figures 9 through 13. As can be seen

13
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in Tables 4 through 8, the Reynolds stress -uxW0 is typically one order of magnitude

less than the Reynolds stress -u v An exception to this trend occurs for thexn

angular location of 80 degrees, where measured values of UxIWh exceed the values of

2
-uxvn . This is the region of predicted separation by the C K computer code. The

measured distributions of -uxwe are not depicted graphically.

The results given in Figures 9 through 13 and in Tables 4 through 8 indicate

that u 2/U is the largest component of turbulent velocity fluctuation and that the

normal component v /U is the smallest component. In addition, the fluctuations
no0

are larger near the body's surface and reduce to values near zero as the edge of

the boundary layer is approached. At the body's surface, the no-slip boundary con-

dition requires the velocity and turbulent fluctuations to be zero, indicating that

a sharp gradient exists in the turbulent fluctuations at the wall. This gradient,

which becomes apparent in the measured data as the boundary layer thickens, is

evident at all angular locations where x/L > 0.914. Similar trends have been noted

by Huang et al. 1,2 for axisymmetric bodies.

The measured distributions of the Reynolds stress - 100 U--n/U are also shown
x n o

in Figures 9 through 13. The maximum value of this component of Reynolds stress

generally occurs near the body wall showing little variation with location along the

model. When the boundary layer is thin, the spatial resolution of the "X" hot-film

probe may not be fine enough to measure precisely the Reynolds stress distributions

near the wall. The maximum value of the u v Reynolds stress occurs near the wall
xn

for all locations measured except x/L = 0.914 and 0 = 86 degrees.

2 2 .2 + 2A turbulence structure parameter al, where a UI '/q and q = u +v +
.12

w0 , was investigated by Huang et al. 1
' for axisymmetric bodies. Huang's results

for axisymmetric bodies showed that this parameter has a value of 0.16 for 0 < n e <

0.6 6 and that the value of a decreases toward the edge of the boundary layer.
r 1

The parameter 6r' used to normalize the distance from the model ne, is defined as

the distance from the wall surface in the n direction at which the measured tur-e

bulent fluctuation u 2/U reaches the value 0.01. Figures 14a through 14d show the
x 0
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range of values of the parameter a for the three-dimensional body. At most axial

positions for the 0- and 67-degree locations, the value of a is, approximately,

0.16 for n / < 0.8. The value of a reduces to 0.07 at the 80-degree plane, thee r- 12

region of separation predicted by the C K computer code. For the remaining angular

positions, the value a fluctuates between 0.04 and 0.16. A reduction in the value12
of the parameter aI was also found by Shiloh et al. near separation for an airfoil

type flow.

The free-stream turbulent velocity fluctuations were not removed from the
2

measured values of q . The reduction in the values of aI near the edge of the

boundary layer may be caused, in part, more by the larger contribution of the free-

stream turbulence to q than to -u vx n-

EDDY VISCOSITY AND MIXING LENGTH

The values of eddy viscosity and mixing length are not measured directly, butr 1,2
are obtained, as in the axisymmetric case, from the measured values of the

Reynolds stress -uv' and the mean velocity gradient 9u / n. The definitions used
xn x e

to compute these quantities are

u
x-ux n = n

e

2 2 12

2 I- + w,2'w .+2 - ( Cos (6)
L~ e/k e 1e e/ e

When the values of w /u are less than 0.1 and * ie value of e is 90 degrees for the
Ox

present measurements, Equation (6) may be approximated by

uv n x - (7)
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A spline curve is used to fair the experimental data before the velocity gradient

is obtained numerically.

The nondimensional distributions of the eddy viscosity e/(U 6 6p*) determined

from the data are shown in Figures 15a through 15d. The parameters U6 and 6 * arep
defined as the potential flow velocity at the edge of the boundary layer and the

planar displacement thickness, respectively, for the displacement body. The solid

curve shown in these figures is the Cebeci and Smith 7 thin boundary layer formula,

given by

S 0.0168 (8)
Up (n e

1 + 5.5 _rr

All values of eddy viscosity for the 3:1 elliptic model are smaller than the experi-

mentally-derived values recommended by Cebeci and Smith for thin boundary layers.

The experimentally-determined distributions of the nondimensional mixing length,

£/6 r, are shown in Figures 16a through 16d. The solid curve in these figures

represents the thin boundary-layer model of Bradshaw et al. 1 3 Agreement between

theory and measurements is, at best, fair for angular locations of 0 and 67 degrees;

for angular locations greater than 67 degrees, the measured values of mixing length

are much smaller than the predictions.

For an axisymmetric turbulent boundary layer, Huang et al. '
2 proposed a

turbulence model relating the mixing length to the square root of the entire tur-

bulence annulus area between the body surface and the edge of the boundary layer.

As seen in Figures 14 through 16, the values of measured turbulence intensity, eddy

viscosity, and intermittency across a turbulent boundary layer decrease from a

maximum value at 60 percent of the boundary-layer thickness to zero at the outside

edge of the boundary layer. The effective gross turbulence area relevant to the

mixing length parameter is [(a+0. 6 6 a)(b+0.6 6b)-(a+ra)(b+ b)]; where c and cb are

the effective thicknesses of the separation bubble (low turbulence mixing) in the

direction of the major and minor axes, a and b, respectively, of the elliptical

cross-section, and 6a and 6b are the boundary-layer thicknesses along the a and b
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axes. A new mixing length model is assumed to apply to a thick three-dimensional

stern boundary layer. The schematic representation of effective turbulence areas,

as determined by the areas between the body surfaces and the contours of 0.66 atr

x/L = 0.81 and 0.95, are shown in Figure 17. The outside edges of the effective

turbulence areas are very close to the contours of u x2/U 0.04. Further out-
x 0

side of these edges, turbulence intensities reduce to 0.01 at the edge of the

boundary layer. The mixing length parameter is assumed to be proportional to the

square-root of these effective turbulence areas, e.g.,

Z - '(a+O.6 6a)(b+O.66b)-ab B A(x)

where the value of a is assumed to be small and will be neglected and the value ofa

C is zero since no separation occurs there. The values of c and cb may not be

negligible if the separation region is so large that the effective turbulence area

is reduced significantly. However, in the inner region, the conventional mixing

length in the wall region, Equation (2), is assumed to apply. The mixing length Z

is assumed to be the same at the intersection of the inner and the outer region,

Y = Yc in Equation (2). Figures 18a through 18c show the normalized mixing length

distributions for three axisymmetric bodies studied by Huang et al. 1'2 These figures

show that the measured values for the three axisymmetric models agree reasonably

well; each peaking at a value of approximately 0.05. The values of 9/A at various

locations for the present three-dimensional model are shown in Figures 18d through

18j. With the exception of the 80-degree angular location, values of the non-

dimensional mixing length remain fairly constant over the stern with respect to both

angular and axial positions.

The data in Figure 18 support the use of a revised mixing length formulation.

The existing thin turbulent boundary-layer method can be applied to the axisymmetric

or three-dimensional elliptical body at locations forward of where the boundary

layer thickness reaches 20 percent of the major or minor axis value. Downstream of

this location, the apparent mixing length Z may be approximated by the thin flat
13

boundary layer of Bradshaw et al. as
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1 1 for 6< 0.2a and 6b < 0.2b
0

(9)

S .[ a(x)+O.6a (x)][b(x)+0.66
b (x)]-a (x)(x)

0 [a(xT XT a TH H )+06b(XTH)-a(xTH XTH) or 6b > 0.2b

where x is the axial location downstream of the initial location of the thick stern

boundary layer xTH. The beginning of the thick stern boundary layer is selected as

the axial location where the local value of 6 a or 6 b grows to the value of 0.2a or

0.2b, respectively (whichever occurs first). The new formulation can be incorporated

into existing axisymmetric and three-dimensional turbulent boundary-layer differ-

ential methods and must be evaluated for a variety of stern boundary layers before

its validity can be fully established.

CONCLUSIONS

The results of recent experimental investigations of the thick stern boundary

layer on a three-dimensional body having 3:1 elliptic transverse cross sections are

presented. Comprehensive boundary layer measurements, including mean and turbulence

velocity profiles and static pressure distributions are given in detail.

An initial attempt has been made at extending to three dimensions the Lighthill

and Preston displacement body concept used to treat the viscid-inviscid stern flow

interaction on axisymmetric bodies. The results of this initial investigation indi-

cate that the use of the displacement model method significantly improves theoretical

predictions of the measured pressure coefficients on the body surface. However,

agreement between measured and predicted pressure coefficients remains poor in the

thick stern boundary-layer region over the last 7 percent of the body. Theoretical

predictions of the measured mean axial velocity profiles are satisfactory in the

thin boundary-layer region, but are generally larger than the measured values when

the boundary layer thickens. Refinements in the present displacement body modeling

scheme to determine the effective displacement thickness accurately over the entire

model surface and wake may improve the pressure distribution predictions in the

thick stern boundary layer.
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Measured values of eddy viscosity and mixing length in the thick stern boundary

layer were found to be smaller than values which have been proposed for thin

boundary layers. Because eddy viscosity and mixing length models play an important

role in boundary-layer calculations, a modification of the theoretical mixing length

model is proposed which may improve the prediction of the boundary layer.

Further work in this area is needed. A larger data base of experimental results

on a variety of three-dimensional geometries will aid in the development of improved

theoretical models to predict the viscid-inviscid stern flow interaction. The pro-

posed new mixing length formulation must be evaluated further.
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TURBULENCE IN MEA
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Figure 5 - Schematic of a Two-Element Sensor Alined 90 Degrees to
Each Other and 45 Degrees to the Probe Axis
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Figure 7 - Measured Mean Axial and Radial Velocity Distributions
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Figure 7 (Continued)
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Figure 7 (Continued)
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Figure 8 Computed and Measured Mean Axial Velocity

Distributions
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Figure 10 - Measured Distributions of Reynolds Stresses
at Angular Location 0 = 80 Degrees
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Figure 13 (Continued)
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Figure 14 - Measured Distributions of Turbulent Structure Parameter
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Figure 14 (Continued)
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Figure 14 (Continued)
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Figure 14 (Continued)
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Figure 15 - Measured Distributions of Eddy Viscosity
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Figure 15 (Continued)
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Figure 15 (Continued)
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Figure 15 (Continued)
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Figure 16 - Measured Distributions of Mixing Length
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Figure 16 (Continued)
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Figure 16 (Continued)
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Figure 16 (Continued)
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Figure 18 - Proposed Similarity Concept for Mixing Length
of Turbulent Boundary Layer
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Figure 18 (Continued)
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Figure 18 (Continued)
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Figure 18 (Continued)
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Figure 18 (Continued)
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TABLE 1 - MODEL OFFSETS (INCHES)

x y z x y z

0.00000 0.00000 0.00000 -2.40000 3.30476 -0.84619

0.00000 0.00000 0.00000 -2.40000 3.80785 -0.61474

0.00000 0.00000 0.00000 -2.40000 4.08710 -0.36463

0.00000 0.00000 0.00000 -2.40000 4.23095 C.00000

0.00000 0.00000 0.00000 -3.00000 0.00000 -1.57974
0.00000 0.00000 0.00000 -3.00000 0.42653 -1.57333
0.00000 0.00000 0.00000 -3.00000 0.85306 -1.55394

0.00000 0.00000 0.00000 -3.00000 1.42177 -1.50698

0.00000 0.00000 0.00000 -3.00000 1.99047 -1.43365

0.00000 0.00000 0.00000 -3.00000 2.60657 -1.31934
0.00000 0.00000 0.00000 -3.00000 3.22267 -1.15828

-0.60000 0.00000 -0.69647 -3.00000 3.79139 -0.94784

-0.60000 0.1805 -0.69365 -3.00000 4.26530 -0.68859

-0.60000 0.37610 -0.68510 -3.00000 4.57809 -0.408943

-0.60000 0.62683 -0.66439 -3.00000 4.73922 0.00000

-0.60000 0.87756 -0.63207 -4.20000 0.00000 -1.87052

-0.60000 1.14918 -0.58167 -4.20000 0.50504 -1.86293

-0.60000 1.42081 -0.51066 -4.20000 1.01008 -1.83996

-0.60000 1.67154 -0.41788 -4.20000 1.68347 -1.78436

-0.60000 1.88048 -0.30359 -4.20000 2.35685 -1.69754

-0.60000 2.01839 -0.18007 -4.20000 3.08635 -1.56219
-0.60000 2.08942 0.00000 -4.20000 3.81585 -1.37149

-1.20000 0.00000 -0.99022 -4.20000 4.48924 -1.12231

-1.20000 0.26736 -0.98621 -4.20000 5.05040 -0.81534

-1.20000 0.53172 -0.97405 -4.20000 5.42076 -0.48361

-1.20000 0.89120 -0.94461 -4.20000 5.61155 0.00000

-1.20000 1.24768 -0.99865 -5.40000 0.00000 -2.11461

-1.20000 1.63387 -0.82700 -5.40000 0.57095 -2.10603

-1.20000 2.02006 -0.72604 -5.40000 1.1419 -2.08009

-1.20000 2.37654 -0.59413 -5.40000 1.90315 -2.01721

-1.20000 2.67361 -0.43163 -5.40000 2.66441 -1.91906

-1.20000 2.86967 -0.25601 -5.40000 3.48911 -1.76605

-1.20000 2.97067 0.00000 -5.40000 4.31381 -1.55046

-1.80000 0.00000 -1.21776 -5.40000 5.07508 -1.26877

-1.80000 0.32880 -1.21282 -5.40000 5.70946 -0.92174

-1.80000 0.65759 -1.19797 -5.40000 6.12815 -0.54672

-1.80000 1.09591 -1.16167 -5.40000 6.34384 0.00000
-1.90000 1.53439 -1.10515 -6.60000 0.00000 -2.32285

-1.80000 2.00931 -1.01703 -6.60000 0.62717 -2.31343
-1.80000 2.48424 -0.89288 -6.60000 1.25434 -2.28491

-1.80000 2.92263 -0.73066 -6.60000 2.09057 -2.21566
-1.80000 3.29796 -0.53081 -6.60000 2.92600 -2.19805

-1.80000 3.52909 -0.31484 -6.60000 3.83271 -1.93997

-1.80000 3.65329 0.00000 -6.60000 4.73862 -1.70314

-2.40000 0.00000 -1.41032 -6.60000 5.57485 -1.39371

-2.40000 0.38079 -1.40459 -6.60000 6.27170 -1.01251

-2.40000 0.76157 -1.38728 -6.60000 6.73163 -0.60056

-2.40000 1.26929 -1.34536 -6.60000 6.96956 0.00000

-2.40000 1.77700 -1.27990 -7.80000 0.00000 -2.50114

-2.40000 2.32702 -1.17785 -7.80000 0.67531 -2.49099

-2.40000 2.97705 -1.03406 -7.80000 1.35062 -2.46029
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TABLE 1 (Continued)

x y z x y z

-7.80000 2.25103 -2.38594 -14.40000 9.21719 0.00000
-7.80000 3.15144 -2.26985 -16.20000 0.00000 -3.13374
-7.80000 4.12689 -2.08887 -16.20000 0.84611 -3.12102
-7.80000 5.10234 -1.83387 -16.20000 1.69222 -3.08255
-7.80000 6.00275 -1.50069 -16.20000 2.82036 -2.98939
-7.80000 6.75309 -1.09022 -16.20000 3.94851 -2.84394
-7.80000 7.24832 -0.64665 -16.20000 5.17066 -2.61719
-7.80000 7.50343 0.00000 -16.20000 6.39282 -2.29769
-9.00000 0.00000 -2.65320 -16.20000 7.52097 -1.88024
-9.00000 0.71636 -2.64243 -16.20000 9.46109 -1.36596
-9.00000 1.43273 -2.60987 -16.20000 9.08157 -0.81020
-9.00000 2.38788 -2.53099 -16.20000 9.40121 0.00000
-9.00000 3.34303 -2.40784 -18.00000 0.00000 -3.16563
-9.00000 4.37778 -2.21586 -18.00000 0.85472 -3.15279
-9.00000 5.41253 -1.94536 -18.00000 1.70944 -3.11393
-9.00000 6.36768 -1.59192 -18.00000 2.84907 -3.01982
-9.00000 7.16364 -1.15650 -18.00000 3.98870 -2.87289
-9.00000 7.68898 -0.68596 -18.00000 5.22330 -2.64383
-9.00000 7.95960 0.00000 -18.00000 6.45789 -2.32108

-10.80000 0.00000 -2.83767 -18.00000 7.59752 -1.89938

-10.80000 0.76617 -2.82615 -18.00000 8.54721 -1.37987
-10.80000 1.53234 -2.79132 -18.00000 9.17401 -0.81845
-10.80000 2.55390 -2,70696 -18.00000 9.49690 0.00000
-10.80000 3.57546 -2,57525 -20.40000 0.00000 -3.17543
-10.80000 4.68215 -2.36992 -20.40000 0.85737 -3.16254
-10.80000 5.78884 -2.08061 -20.40000 1.71473 -3.12356
-10.80000 6.81040 -1.70260 -20.40000 2.85788 -3.02916
-10.80000 7.66170 -1.23691 -20.40000 4.00104 -2.88178
-10.80000 8.22355 -0.73366 -20.40000 5.23945 -2.65200
-10.80000 8.51300 0.00000 -20.40000 6.47787 -2.32826
-13.20000 0.00000 -3.01212 -20.40000 7.62102 -1.90526
-13.20000 0.81327 -2.99989 -20.40000 8.57365 -1.38414
-13.20000 1.62654 -2.96292 -20.40000 9.20239 -0.82098
-13.20000 2.71091 -2.87338 -20.40000 9.52629 0.00000
-13.20000 3.79527 -2.73357 -22.80000 0.00000 -3.17543
-13.20000 4.96999 -2.51561 -22.80000 0.85737 -3.16254
-13.20000 6.14472 -2.20852 -22.80000 1.71473 -3.12356
-13.20000 7.22908 -1.80727 -22.80000 2.85798 -3.02916
-13.20000 8.13272 -1.31295 -22.80000 4.00104 -2.88178
-13.20000 8.72912 -0.77876 -22.80000 5.23945 -2.65200
-13.20000 9.03635 0.00000 -22.80000 6.47787 -2.32826
-14.40000 0.00000 -3.07240 -22.80000 7.62102 -1.90526
-14.40000 0.82955 -3.05993 -22.80000 8.57365 -1.38414
-14.40000 1.65910 -3.02222 -22.80000 9.20239 -0.82098
-14.40000 2.76516 -2.93088 -22.80000 9.52628 0.00000
-14.40000 3.87122 -2.78828 -27.60000 0.00000 -3.17543
-14.40000 5.06946 -2.56596 -27.60000 0.85737 -3.16254
-14.40000 6.26769 -2.25272 -27.60000 1.71473 -3.12356
-14.40000 7.37376 -1.84344 -27.60000 2.95789 -3.02916
-14.40000 8.29548 -1.33923 -27.60000 4.00104 -2.88179
-14.40000 8.90381 -0.79434 -27.60000 5.23945 -2.65200
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TABLE 1 (Continued)
y z 

z-27.60000 6.47787 -2.32826 -50.40000 1.71473 -3.12356-27.60000 7.62102 "f.90526 -50.40000 2.85788 -3.0296
-27.60000 8.57365 -1.38414 -50.40000 4.00104 -2.88178-27.60000 9.20239 -0.82098 -50.40000 5.23945 -2.65200
-27.60000 9.52628 0.00000 -50.40000 6.47787 -2.32826-31.20000 0.00000 -3.17543 -50.40000 7.62102 -1.90526-31.20000 0.85737 -3.16254 -50.40000 8.57365 -1.38414-31.20000 1.71473 -3.12356 -50.40000 9.20239 -0.82098-31.20000 2.85788 -3.02916 -50.40000 9.52628 0.00000-31.20000 4.00104 -2.88178 -56.40000 0.00000 -3.17543
-31.20000 5.23945 -2.65200 -56.40000 0.85737 -3.16254-31.20000 6.47787 -2.32826 -56.40000 1.71473 -3.12356-31.20000 7.62102 -1.90526 -56.40000 2.85788 -3.02916-31.20000 8.57365 -1.38414 -56.40000 4.00104 -2.88178-31.20000 9.2023? -0.82098 -56.40000 5.23945 -2.65200-31.20000 9.52628 0.00000 -56.40000 6.47787 -2.32826-36.00000 0.00000 -3.17543 -56.40000 7.62102 -1.90526-36.00000 0.85737 -3.16254 -56.40000 8.57365 -1.38414
-36.00000 1.71473 -3.12356 -56.40000 9.20239 -0.82098-36.00000 2.85788 -3.02976 -56.40000 9.52629 0.00000
-36.00000 4.00104 -2.88178 -60.00000 0.00000 -3.17543-36.00000 5.23945 -2.65200 -60.00000 0.85737 -3.16254
-36.00000 6.47787 -2.32826 -60.00000 1.71473 -3.12356-36.00000 7.62102 -1.90526 -60.00000 2.85788 -3.02916-36.00000 8.57365 -1.38414 -60.00000 4.00104 -2.88178-36.00000 9.20239 -0.82098 -60.00000 5.23945 -2.65200-6.00000 9.52628 0.00000 -60.00000 6.47787 -2.32826-9.60000 0.00000 -3,17543 -60.00000 7.62102 -1.90526-39.60000 0.85737 -3.16254 -60.00000 8.57365 -1.38414-39.60000 1.71473 -3.12356 -60.00000 9.20239 -0,82098-39.60000 2.85788 -3.02916 -60.00000 9.52628 0.00000-39.60000 4.00104 -2.88178 -63.60000 0.00000 -3.17543-39.60000 5.23945 -2.65200 -63.60000 0.85737 -3.16254

-39.60000 6.47787 -2.32826 -63.60000 1.71473 -3.12356
-39.60000 7.62102 -1.90526 

-63.60000 2.85788 -3.02916-39.60000 8.57365 -1.38414 -63.60000 4.00104 -2.88178-39.60000 9.20239 -0.82098 -63.60000 5.23945 -2.65200-39.60000 9.52628 0.00000 -63.60000 6.47787 -2.32826-44.40000 0.00000 -3.17543 -63.60000 7.62102 -1.90526-44.40000 0.85737 -3.16254 -63.60000 8.57365 -1.38414-44.40000 1.71473 -3.12356 -63.60000 9.20239 -0.82098-44.40000 2.85788 -3.02916 -63.60000 9.52628 0.00000
-44.40000 4.00104 -2.88178 -68.40000 0.00000 -3.17543-44.40000 5.23945 -2.65200 -69.40000 0.85737 -3.16254-44.40000 6.47797 -2.32826 -68.40000 1.71473 -3.12356-44.40000 7.62102 -1.90526 -68.40000 2.85788 -3.02916-44.40000 8.57365 -1.38414 -68.40000 4.00104 -2.88178-44.40000 9.20239 -0.82099 -68.40000 5.21945 -2.65200
-440.40000 

-68.40000 6.47787 -2.32826-S0.40000 0.00000 -3.17543 -68.40000 7.62102 -1.90526
-50.40000 0.85737 -3.16254 

-68.40000 8.57365 -1.38414
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TABLE 1 (Continued)

x y z x y z

-68.40000 9.20239 -0.92098 -88.88892 4.91543 -2.40799

-68.40000 9.52628 0.00000 -88.89892 6.07725 -2.18427

-73.20000 0.00000 -3.17543 -88.88892 7.14971 -1.78743

-73.20000 0.95737 -3.16254 -88.88992 8.04343 -1.29954

-73.20000 1.71473 -3.12356 -88.88892 8.63328 -0.77021

-73.20000 2.85788 -3.02916 -88.88892 8.93714 0.00000

-73.20000 4.00104 -2.88178 -91.17648 0.00000 -2.89825

-73.20000 5.23945 -2.65200 -91.17648 0.78253 -2.88648

-73.20000 6.47787 -2.32826 -91.17648 1.56505 -2.85091

-73.20000 7.62102 -1.90526 -91.1764F 2.60842 -2.76475

-73.20000 8.57365 -1.38414 -91.17646 3.65179 -2.63023

-73.20000 9.20239 -0.82098 -91.17648 4.78211 -2.42051

-73.20000 9.52628 0.00000 -91.17648 5.91242 -2.12503

-76.99344 0.00000 -3.17158 -91.17648 6.95579 -1.73895

-76.99344 0.85633 -3.15971 -91.17648 7.82527 -1.26332

-76.99344 1.71265 -3.11978 -91.17648 9.39912 -0.74932

-76.99344 2.85442 -3.02550 -91.17648 8.69474 0.00000

-76.99344 3.99619 -2.97829 -94.83660 0.00000 -2.73555

-76.99344 5.23311 -2.64879 -94.83660 0.73860 -2.72445

-76.99344 6.47003 -2.32544 -94.83660 1.47720 -2.69087

-76.99344 7.61180 -1.90295 -94.83660 2.46199 -2.60955

-76.99344 8.56327 -1.38246 -94.83660 3.44679 -2.48258

-76.99344 9.19124 -0.81999 -94.83660 4.51366 -2.20463

-76.99344 9.51474 0.00000 -94.83660 5.58052 -2.00574

-81.56868 0.00000 -313836 -94.83660 6.56532 -1.64133

-81.56868 0.84736 -3.12562 -94.83660 7.38598 -1.19240

-81.56868 1.69471 -3.08710 -94.83660 7.92762 -0.70725

-81.56868 2.82452 -2.99381 -94.83660 8.20665 0.00000

-81.56868 3.95433 -2.84814 -97.12416 0.00000 -2.61164

-81.56868 5.17829 -2.62105 -97.12416 0.70514 -2.60105

-81.56868 6.40226 -2.30108 -97.12416 1.41029 -2.56899

-81.56868 7.53207 -1.88302 -97.12416 2.35048 -2.49135

-81.56868 8.47357 -1.36798 -97.12416 3.29067 -2.37013

-81.56868 9.09497 -0.81140 -97.12416 4.30921 -2.18115

-81.56868 9.41508 0.00000 -97.12416 5.32775 -1.91489

-85.22880 0.00000 -3.07684 -97.12416 6.26795 -1.56699

-85.22880 0.83075 -3.06435 -97.12416 7.05144 -1.13839

-85.22880 1.66149 -3.02658 -97.12416 7.56854 -0.67522

-85.22880 2.76915 -2.93512 -97.12416 7.83493 0.00000

-85.22880 3.87682 -2.79230 -100.78428 0.00000 -2.37435

-85.22880 5.07678 -2.56967 -100.78428 0.64108 -2.36472

-85.22880 6.27675 -2.25597 -100.78428 1.28215 -2.33557

-85.22880 7.38441 -1.84610 -100.78428 2.13692 -2.26499

-85.22880 8.30746 -1.34116 -100.78428 2.99168 -2.15478

-85.22880 8.91668 -0.79549 -100.78428 3.91768 -1.98298

-85.22890 9.23051 0.00000 -100.79428 4.84368 -1.74090

-98.88892 0.00000 -2.97905 -100.78428 5.69845 -1.42461

-8.89892 0.80434 -2.96696 -100.78428 6.41075 -1.03496

-88.89892 1.60869 -2.93039 -100.78428 6.88087 -0.61387

-88.88892 2.69114 -2.84183 -100.79428 7.12306 0.00000

-88.88892 3.75360 -2.70356 -103.52940 0.00000 -2.16142
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TABLE 1 (Continued)

x y z x y z

-103.52940 0.58358 -2.15265 -111.60000 3.55573 -0.57404
-103.52940 1.16717 -2.12612 -111.60000 3.81648 -0.34048
-103.52940 1.94528 -2.06186 -111.60000 3.95081 0.00000
-103.52940 2.72339 -1.96154 -114.00000 0.00000 -0.97745
-103.52940 3.56634 -1.80514 -114.00000 0.26391 -0.97349
-103.52940 4.40930 -1.58478 -114.00000 0.52783 -0.96149
-103.52940 5.18741 -1.29685 -114.00000 0.87971 -0.93243
-103.52940 5.83584 -0.94214 -114.00000 1.23159 -0.88706
-103.52940 6.26380 -0.55882 -114.00000 1.61280 -0.81634
-103.52940 6.48426 0.00000 -114.00000 1.99401 -0.71668
-105.81696 0.00000 -1.95826 -114.00000 2.34589 -0.58647
-105.81696 0.52873 -1.95032 -114.00000 2.63913 -0.42606
-105.81696 1.05746 -1.92628 -114.00000 2.83266 -0.25271
-105.81696 1.76244 -1.86806 -114.00000 2.93236 0.00000
-105.81696 2.46741 -1.77717 -114.84000 0.00000 -0.84870
-105.81696 3.23113 -1.63547 -114.84000 0.22915 -0.84526
-105.81696 3.99486 -1.43582 -114.84000 0.45830 -0.83484
-105.81696 4.69983 -1.17496 -114.84000 0.76383 -0.80961
-105.81696 5.28731 -0.85359 -114.84000 1.06937 -0.77022
-105.81696 5.67504 -0.50629 -114.84000 1.40036 -0.70881
-105.81696 5.87479 0.00000 -114.84000 1.73136 -0.62228
-108.10452 0.00000 -1.72912 -114.84000 2.03689 -0.50922
-108.10452 0.46686 -1.72211 -114.84000 2.29150 -0.36994
-108.10452 0.93373 -1.70088 -114.84000 2.45955 -0.21943
-108.10452 1.55621 -1.64948 -114.84000 2.54611 0.00000
-108.10452 2.17870 -1.56922 -116.04000 0.00000 -0.66049
-108.10452 2.85305 -1.44410 -116.04000 0.17833 -0.65781
-108.10452 3.52741 -1.26781 -116.04000 0.35666 -0.64970
-108.10452 4.14990 -1.03747 -116.04000 0.59444 -0.63007
-108.10452 4.66863 -0.75371 -116.04000 0.83222 -0.59941
-108.10452 5.01100 -0.44705 -116.04000 1.08981 -0.55162
-108.10452 5.18737 0.00000 -116.04000 1.34740 -0.48428
-110.39220 0.00000 -1.47123 -116.04000 1.58517 -0.39629
-110.39220 0.39723 -1.46526 -116.04000 1.78332 -0.28790
-110.39220 0.79447 -1.44720 -116.04000 1.91410 -0.17076
-110.39220 1.3241f -1.40347 -116.04000 t.98147 0.00000
-110.39220 1.85375 -1.33518 -116.88000 0.00000 -0.53001
-110.39220 2.42753 -1.22872 -116.88000 0.14310 -0.52786
-110.39220 3.00131 -1.07873 -116.88000 0.28620 -0.52135
-110.39220 3.53096 -0.88274 -116.88000 0.47701 -0.50559
-110.39220 3.97233 -0.64130 -116.88000 0.66781 -0.48099
-110.39220 4.26363 -0.38038 -116.88000 0.87451 -0.44264
-110.39220 4.41370 0.00000 -116.88000 1.08122 -0.38861
-111.60000 0.00000 -1.31694 -116.88000 1.27202 -0.31800
-111.60000 0.35557 -1.31159 -116.88000 1.43102 -0.23102
-111.60000 0.71115 -1.29543 -116.88000 1.53596 -0.13703
-111.60000 1.18524 -1.25628 -116.88000 1.59002 0.00000
-111.60000 1.65934 -1.19515 -117.36000 0.00000 -0.47285
-111.60000 2.17294 -1.09986 -117.36000 0.12767 -0.47093
-111.60000 2.68655 -0.96559 -117.36000 0.25534 -0.46513
-111.60000 3.16065 -0.79016 -117.36000 0.42556 -0.45107
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TABLE 1 (Continued)

xy z x y z

- 17.36000 0.59579 -0.42912 -119.76000 0.00000 -0.27944
-117.36000 0.78020 -0.39491 -119.76000 0.07545 -0.27830
-117.36000 0.96461 -0.34670 -119.76000 0.15090 -0.27487
-117.36000 1.13484 -0.28371 -119.76000 0.25149 -0.26657
-117.36000 1.27669 -0.20611 -119.76000 0.35209 -0.25360
-117.36000 1.37032 -0.12225 -119.76000 0.46107 -0.23338
-117.36000 1.41855 0.00000 -119.76000 0.57005 -0.20489
-117.72000 0.00000 -0.44225 -119.76000 0.67065 -0.16766
-117.72000 0.11941 -0.44046 -119.76000 0.75448 -0.12180
-117.72000 0.23882 -0.43503 -119.76000 0.80981 -0.07225
-117.72000 0.39803 -0.42188 -119.76000 0.83831 0.00000
-117.72000 0.55724 -0.40135 -120.24000 0.00000 -0.19861
-117.72000 0.72971 -0.36935 -120.24000 0.05362 -0.19780
-117.72000 0.90219 -0.32426 -120.24000 0.10725 -0.19536
-117.72000 1.06140 -0.26535 -120.24000 0.17875 -0.18946
-117.72000 1.19408 -0.19277 -120.24000 0.25025 -0.18024
-117.72000 1.28164 -0.11434 -120.24000 0.32770 -0.16587
-117.72000 1.32675 0.00000 -120.24000 0.40516 -0.14562
-118.44000 0.00000 -0.38798 -120.24000 0.47666 -0.11917
-118.44000 0.10475 -0.38640 -120.24000 0.53624 -0.08657
-118.44000 0.20951 -0.38164 -120.24000 0.57557 -0.05135
-118.44000 0.34918 -0.37011 -120.24000 0.59583 0.00000
-118.44000 0.48885 -0.35210 -120.48000 0.00000 -0.13106
-118.44000 0.64017 -0.32403 -120.48000 0.03539 -0.13053
-118.44000 0.79148 -0.28447 -120.48000 0.07077 -0.12892
-118.44000 0.93115 -0.23279 -120.48000 0.11795 -0.12502
-118.44000 1.04754 -0.16912 -120.48000 0.16513 -0.11894
-118.44000 1.12436 -0.10031 -120.48000 0.21625 -0.10946
-1IR.44000 1.16394 0.00000 -120.48000 0.26736 -0.09609
-118.92000 0.00000 -0.35161 -120.48000 0.31454 -0.07864
-118.92000 0.09493 -0.35018 -120.48000 0.35386 -0.05713
-118.92000 0.18987 -0.34586 -120.48000 0.37981 -0.03388
-118.92000 0.31645 -0.33541 -120.48000 0.39318 0.00000
-118.92000 0.44302 -0.31909 -120.72000 0.00000 0.00000
-118.92000 0.58015 -0.29365 -120.72000 0.00000 0.00000
-118.92000 0.71728 -0.25780 -120.72000 0.00000 0.00000
-118.92000 0.84386 -0.21096 -120.72000 0.00000 0.00000
-118.92000 0.94934 -0.15326 -120.72000 0.00000 0.00000
-118.92000 1.01896 -0.09091 -120.72000 0.00000 0.00000
-118.92000 1.05482 0.00000 -120.72000 0.00000 0.00000
-119.52000 0.00000 -0.30195 -120.72000 0.00000 0.00000
-119.52000 0.08153 -0.30073 -120.72000 0.00000 0.00000
-119.52000 0.16306 -0.29702 -120.72000 0.00000 0.00000
-119.52000 0.27176 -0.28805 -120.72000 0.00000 0.00000
-119.52000 0.38046 -0.27403
-119.52000 0.49822 -0.25218
-119.52000 0.61599 -0.22140
-119.52000 0.72469 -0.18117
-119.52000 0.81528 -0.13162
-119.52000 0.87506 -0.07907
-119.52000 0.90586 0.00000
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TABLE 2 - MEASURED PRESSURE COEFFICIENTS

0, Angular Position (deg)

xL0 45 67 80 90

0.719 -0.0442 -0.0397 -0.0385 -0.0421 -0.0397

0.810 -0.0349 -0.0385 -0.0385 -0.0241 -0.0193

0.839 -0.0277 -0.0277 -0.0205 -0.0144 -0.0012

0.854 -0.0169 -0.0157 -0.0085 -0.0012 +0.0073

0.879 +0.0073 +0.0061 +0.0097 +0.0182 +0.0278

0.894 +0.0230 +0.0218 +0.0230 +0.0339 +0.0448

0.914 +0.0375 +0.0387 +0.0448 +0.0557 +0.0617

0.934 +0.0714 +0.0714 +0.0787 +0.0896 +0.0932

0.954 +0.1150 +0.1126 +0.1138 +0.1211 +0.1235
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